(x^2)+10x=16

Simple and best practice solution for (x^2)+10x=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+10x=16 equation:



(x^2)+10x=16
We move all terms to the left:
(x^2)+10x-(16)=0
a = 1; b = 10; c = -16;
Δ = b2-4ac
Δ = 102-4·1·(-16)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{41}}{2*1}=\frac{-10-2\sqrt{41}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{41}}{2*1}=\frac{-10+2\sqrt{41}}{2} $

See similar equations:

| 8(w+10)=56 | | 8y=4.8 | | k-(-5)=-9 | | -1+k=7,5 | | 3(1.5x+9=6 | | -3d+-1=-19 | | 2(x+1)+3(x-2)=6 | | 5x-9=4x-18 | | 40=-8c-16 | | (-9)-z=20 | | x-4=3-x | | 25x+35=12-56 | | 118-w=170 | | w-(-9)=21 | | 0.15x0.4=0.06 | | b+10=-8 | | 7=3s-4 | | –10j+2(9j−2)=7j | | 8x-12.9=7x+12.1 | | 9+4x=7+7(x+7) | | 43​ (x+8)=9 | | x-55=293 | | 3y+3,8=12.8 | | –6(–5y+8)=6y | | -b+2+3b=8-4b | | 2x−4x+15=0 | | 0.6x-4=0.8+1 | | 292=-v+29 | | 3m−3=3= | | 5m+47=100 | | -10+2m=2m+6-4m | | x-90=362 |

Equations solver categories